If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(R)=5R^2+1850R
We move all terms to the left:
(R)-(5R^2+1850R)=0
We get rid of parentheses
-5R^2+R-1850R=0
We add all the numbers together, and all the variables
-5R^2-1849R=0
a = -5; b = -1849; c = 0;
Δ = b2-4ac
Δ = -18492-4·(-5)·0
Δ = 3418801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3418801}=1849$$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1849)-1849}{2*-5}=\frac{0}{-10} =0 $$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1849)+1849}{2*-5}=\frac{3698}{-10} =-369+4/5 $
| 10–2z=2 | | 11=-4/p+8 | | 324=2(88+w) | | 11=-4/p=8 | | 7+3(2x-1)=9x-8 | | (x/12)*100=18.43 | | 5-2f=4 | | 5x+2=15+5x | | c=-55=-6 | | 2(4n+5)=-7n-23 | | 4752=π9²h | | .5d-11=2 | | .72=d | | 5–2f=1 | | 3(d−7)=27 | | 110=39.39+.50x | | 8x+13=84 | | (X+3)/(7)+(x+4)/(4)=1 | | 177=403=w | | 3g–2=4 | | 2x–7=15. | | 4752=π(9x9) | | 2x–7=15 | | 4(x-2)-9=-3(x+5) | | c=39.39+.50 | | 216=w-129 | | 22/9x-10/3=2/9 | | u/4-9=10 | | X-0.3x=143.5 | | 20=4r+12 | | X(-3x)=2x | | -5-(-t+1)=-4 |